By enhancing the A. sericeasur effectiveness in controlling CBB populations, vegetation connectivity can potentially reduce chemical pesticide use. Our results offer management insight into one piece of a complex ecological puzzle. Because A. sericeasur tend C. viridis , they could indirectly reduce coffee plant growth by contributing to high-scale densities and an associated damaging sooty mold. However, high densities of C. viridis also beneficially attract Lecanicillium lecanii, which attacks coffee leaf rust , a devastating coffee fungal disease. Moreover, the CBB is regarded as a far more damaging coffee pest than C. viridis . Furthermore, facilitating the mobility of A. sericeasur as a single ant species is not necessarily the most effective pest management approach, as higher ant diversity can improve pest control through the cooperation of complementary predatory species. Enhanced A. sericeasur activity on coffee plants could alter the behavior of other ant species, which could have positive or negative effects on overall pest control services due to spatial complementarity or potential negative interactions between predators . However, studies find that increasing connectivity generally increases species richness, and so, vegetation connections that increase A. sericeasur mobility likely facilitate the mobility of other predatory ants in coffee systems, 10 liter drainage collection pot even by providing alternative paths to avoid aggressive altercations with A. sericeasur.
Although A. sericeasur occupies only 3–5% of the shade trees at our research site, other ants known to contribute to CBB regulation would likely also use vegetation pathways, facilitating additional pest control. Future research should examine how vegetation connectivity impacts the abundance and diversity of other ant species on coffee plants and the associated spatial complementarity between specific predators of the CBB. Future studies could also investigate how phorid attacks on Azteca vary on different foraging pathways to better understand the mechanisms behind their preference for vegetation pathways.Connectivity affects arboreal ant distribution, behavior, and interactions with other organisms in agroecosystems, profoundly impacting ant community diversity and antprovided ecosystem services. Our results demonstrate how vegetation connectivity increases A. sericeasur activity, recruitment to resources, and CBB removal, and that naturally occurring vegetation connectivity, in the form of branches and natural substrates, accounts for this enhancement. As climate change increases coffee’s susceptibility to CBB damage, agroecological and economically feasible forms of pest control are increasingly necessary for coffee-producing communities. Farm management conducive to forest conservation, habitat and structural complexity, and the associated higher degrees of vegetation connectivity will facilitate ant-provided pest control services in coffee agroecosystems.Table grapes have become an important fresh commodity in Brazil for both internal market and exportation.
Over the period of 2000–2016, Brazil presented an increase of ∼150% in table grape production, reaching around 970,000 MT in 2016 . The northern region of Paraná state is one of the main areas of table grape production. The mild winter and subtropical conditions of this region permit two crops of grapes per year, which allow Brazilian growers to time their production to coincide with market windows of other countries and compete for more advantageous prices. However, in these subtropical regions, berry ripening and harvest often occur during the rainy season, which is not ideal for Vitis vinifera cultivars because excess rain and moisture compromise the overall quality of the berries . Therefore, Brazilian table grape production is starting to incorporate American and/or hybrid grape cultivars that are better adapted to warm and rainy climates. Another disadvantage of growing table grapes in subtropical areas is that high temperatures during ripening can inhibit anthocyanin biosynthesis in the berries from V. labrusca and hybrid cultivars . This results in inadequate fruit color, and thereby a decrease in market acceptance and the potential economic value of the commodity . The seedless table grape Selection 21, a new hybrid of V. vinifera × V. labrusca recently developed by the Grape Genetic Breeding Program of Embrapa Grape and Wine, Brazil, obtained from the cross of [Arkansas 1976 × ] × “BRS Linda,” is a clear example of a cultivar that lacks red color development when grown in subtropical regions. The plant growth regulator ethephon, an ethylene-releasing agent, has long been known to improve berry color when applied at véraison .
More recently, the application of –cis-abscisic acid has also been shown to stimulate anthocyanin accumulation and thereby improve berry color . S-ABA appears to be more effective than ethephon in enhancing grape color and it has other potential benefits compared to ethephon, including a shorter postharvest interval, and an exemption from tolerance in most countries. The introduction of S-ABA as an active ingredient in a commercial plant growth regulator prompted many studies on V. vinifera cultivars under temperate climate conditions. Such studies have shown that the efficacy of S-ABA varies with the cultivar , the S-ABA concentration , the time of application and the environmental conditions . Abscisic acid is an important regulator of ripening and anthocyanin biosynthesis in grape berries . Studies have shown that exogenous application of S-ABA can significantly increase the activity of a wide range of genes involved in anthocyanin biosynthesis . Most of these studies tested the effects of a single application of S-ABA before or during véraison. However, studies of the effects of S-ABA several applications at different concentrations and timings following véraison are still needed to optimize the use of this plant growth regulator in table grape cultivation . In grapes, the anthocyanin biosynthesis pathway involves multiple steps that are controlled by MYB transcription factors, such as VvMYBA1 and VvMYBA2 . In red varieties, the VvMYBA1 gene is only expressed after véraison. Both VvMYBA1 and VvMYBA2 regulate anthocyanin biosynthesis during ripening by strictly controlling the expression of the canonical UDP-glucose:flavonoid 3-Oglucosyltransferase gene . Determining how long grape berries are competent to induce the expression of anthocyanin biosynthetic genes may help determine the optimal time, number, and frequency of S-ABA applications. Currently, little is known about the potential benefits of multiple applications, which may be desirable if a single application results in an insufficient response. The aim of the present study was to determine the effects of S-ABA applications at different concentrations and times on the quality and biochemical properties of berries from the seedless grape Selection 21 hybrid during three growing seasons in the region of Paraná, Brazil. We evaluated a variety of parameters including: grape color development, berry phenolic profiles, and gene expression of transcriptional regulators and biosynthetic enzymes of the anthocyanin pathway after treatments with S-ABA. The results of this report indicate that two S-ABA applications during and after véraison extend the competency of grape berries to respond to ABA and induce the accumulation of anthocyanins, resulting in higher grape berry coloration.The study was conducted during three consecutive seasons in a commercial vineyard located in Marialva, state of Paraná , Brazil , using 4-year-old vines of hybrid seedless grape Selection 21 grafted onto IAC 766 Campinas rootstock. According to the Köppen classification, the climate of the region is Cfa , with an average temperature below 18◦C in the coldest month and above 22◦C in the hottest month and an average annual rainfall of 1,596 mm. The region’s soil is classified as dystroferric red latosol . The vines were trained using a bilateral overhead trellis system, 10 liter drainage pot where vines were spaced at 2.5 m × 2.5 m , and each vine had 6.25 m2 total canopy area. Cane pruning was performed during the 2013, 2014, and 2015 seasons and was followed by application of 3% hydrogenated cyanamide to the two apical buds to induce and standardize sprouting. The number of canes per vine was evenly adjusted to 40 and the number of shoots per vine was also established to 40 . Considering that a grape bunch of the Selection 21 weighs on average 460 g, the load per vine is 18.40 kg, which represents an estimated yield of 29.44 tons/ha. Furthermore, to avoid drifting, a non-treated vine was left as side border between two treated vines, which almost duplicated the experimental area. In each plot, all grape bunches were treated , and the bunch samples were collected from random positions at each side of the canopy to account for intracanopy variability.
Control plants were not subjected to any treatment, instead, they were sprayed with water at the same time and following the same procedures as the S-ABA treatments.The effects of applying S-ABA isomer at different concentrations and times were evaluated in terms of berry quality traits. ProToneR , the commercial growth regulator used in this study, has an active ingredient concentration of 100 g/L S-ABA. As shown in Figure 1, the initial treatments tested in the 2013 and 2014 seasons corresponded to: control or water spray, 200 mg/L S-ABA application at 7 days after véraison , 400 mg/L S-ABA application at 7 DAV, 200 mg/L S-ABA application at 7 DAV plus an additional application at 21 DAV, and 400 mg/L S-ABA at 7 DAV plus an additional application at 21 DAV. In the 2015 season, only the control and treatments of 400 mg/L S-ABA with one or two applications were performed and analyzed. Berry samples from the 2015 season were collected from each treatment at four different times: 7 DAV , 14 DAV, 28 DAV, and 35 DAV for further targeted analyses . For all seasons, a randomized complete block experimental design was used, with five treatments and three to four replicates, and with each plot consisting of one vine . Véraison was determined by measuring soluble solid content and firmness of grape berries randomly sampled in the experimental vineyard. At véraison, the mean grape SSC concentration was 9◦Bx, and 20% of the berries in more than 50% of the grape clusters presented softening . The berries presented a mean of 11◦Bx at 7 DAV, the time of the first S-ABA application, and a mean of 13◦Bx at 21 DAV, the time of the second S-ABA application. For treatment applications, grape clusters were sprayed in the morning using a knapsack sprayer at a pressure of 568.93 psi with JA1 hollow cone nozzle tips at a volume of 800 L/ha to provide complete and uniform coverage. In addition, 0.3 mL/L of Break-ThruR a non-ionic surfactant was added to all treatments. During the trials, the standard regional cultivation practices with regard to nutrition, weed control, and pest and disease management were used.Clusters of each plot were manually harvested when SSC stabilized . The clusters were cleaned, and damaged berries were discarded. Color coverage of the bunches was determined using 10 grape clusters per plot by visually rating the clusters on a scale of 1–5 using the following scale: 0–20%, 21–40%, 41–60%, 61–80%, and 81–100% coverage . The same grape clusters used for evaluating color coverage measurements were used for berry sampling. For physicochemical analyses, two berries were collected from the upper, middle, and lower portion of each grape bunch, yielding a total of 70 berries per plot. Total anthocyanins and color index of red grapes were determined in berry samples from all seasons. The following variables were analyzed only for the 2013 and 2014 seasons: color coverage, total polyphenols, and berry firmness. All physiological analyzes were performed in the Laboratory of Fruit Analysis of the Agricultural Research Center, Londrina State University, Brazil. The total anthocyanin concentration of the berries was determined using 30 berries per plot, which were frozen and stored at −20◦C. The berry skins were removed using tweezers, taking care to remove only the skin, without pulp. The skins were washed once with water, followed by washing in deionized water and drying with absorbent paper. A 5-g skin sample was then placed in a polystyrene tube containing 50 mL of acidified methanol and stored in the dark for 48 h at room temperature. The tubes were then removed from the dark and stirred manually for 5 s. Absorbance was determined using a Genesys 10S spectrophotometer at 520 nm with the solvent as blank. The results were expressed in milligram malvidin-3-glucoside per gram of skin .The CIRG was determined using 10 berries per plot with a CR-10 colorimeter , using the CIELAB color system. Each berry was placed on the base of the equipment and compressed using a cylindrical probe with a diameter of 35 mm parallel to the base. A constant force of 0.05 N at a speed of 1.0 mm/s was applied to promote the cracking of the sample.